A Measure of Resistance: Detecting Tamiflu Metabolite in Sewage Discharge and River Water

نویسنده

  • Tanya Tillett
چکیده

The use of engineered nanomaterials has grown dramatically over the past decade as the pharmaceutical, electronics, and other industries leverage these materials’ unique physical and chemical properties. In environmental circles, nanomaterials have aroused concern because, even as their use burgeons, their impact on animal and plant life remains largely unknown. Moreover, scientists studying the environmental effects of nanomaterials might unknowingly be putting their own health at risk [EHP 118:49–54; Johnson et al.]. The National Institute for Occupational Safety and Health, which conducts research on workplace safety, has no recommended exposure limit guidelines for nanomaterials, and the Occupational Safety and Health Administration has no permissible exposure limit specific to engineered nanomaterials. However, recent animal toxicology studies suggest nanomaterials may cause specific adverse health effects. For example, carbon nanotubes have been shown to induce inflammation and oxidative stress in animal models. To assess the magnitude of potential exposure in a laboratory setting, a team of researchers measured the amount of carbonaceous nanomaterials (CNMs) released into the air during routine material handling and processing tasks in standard environmental matrices such as artificial river water. The authors evaluated nano material releases using real-time particle counters and transmission electron microscopy. The research team found that CNMs became airborne when they were handled and weighed in the lab. Smaller structures, with an aerodynamic diameter of less than 1 μm, scattered more readily than larger particles. A surprise finding was the substantial release of CNMs during sonication, a common laboratory process used to break apart agglomerates of nanomaterials into aqueous dispersions. Sonication produced a CNM-containing mist that could be inhaled by workers or that could leave CNMs on laboratory surfaces after the water evaporated. The extent of release during sonication was increased when natural organic matter was added to the solution, as is often done to simulate conditions in the environment. Hydrophobic CNMs exhibited higher airborne particle number concentrations during handling than during sonication, whereas hydrophilic CNMs exhibited the opposite trend. These findings contradict the belief that risks of exposure are minimized when working with nanomaterials in liquid suspensions. The authors believe this field case study is the first to demonstrate the release of CNMs during sonication and also the first to detail nanomaterial release in an environmental laboratory. They caution that more robust statistically based experimental research is needed to evaluate CNM exposure among laboratory workers. Until then, they urge researchers working with nanomaterials to use appropriate personal protective equipment in the laboratory and to adopt adequate engineering controls to minimize their exposure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oseltamivir Carboxylate, the Active Metabolite of Oseltamivir Phosphate (Tamiflu), Detected in Sewage Discharge and River Water in Japan

BACKGROUND Oseltamivir phosphate (OP; Tamiflu) is a prodrug of the anti-influenza neuraminidase inhibitor oseltamivir carboxylate (OC) and has been developed for the treatment and prevention of both A and B strains of influenza. The recent increase in OP resistance in influenza A virus (H1N1; commonly called "swine flu") has raised questions about the widespread use of Tamiflu in seasonal epide...

متن کامل

Oseltamivir (Tamiflu®) in the environment, resistance development in influenza A viruses of dabbling ducks and the risk of transmission of an oseltamivir-resistant virus to humans – a review

The antiviral drug oseltamivir (Tamiflu(®)) is a cornerstone in influenza pandemic preparedness plans worldwide. However, resistance to the drug is a growing concern. The active metabolite oseltamivir carboxylate (OC) is not degraded in surface water or sewage treatment plants and has been detected in river water during seasonal influenza outbreaks. The natural influenza reservoir, dabbling duc...

متن کامل

Detection of the Antiviral Drug Oseltamivir in Aquatic Environments

Oseltamivir (Tamiflu) is the most important antiviral drug available and a cornerstone in the defence against a future influenza pandemic. Recent publications have shown that the active metabolite, oseltamivir carboxylate (OC), is not degraded in sewage treatment plants and is also persistent in aquatic environments. This implies that OC will be present in aquatic environments in areas where os...

متن کامل

Potential Risks Associated with the Proposed Widespread Use of Tamiflu

BACKGROUND The threat of pandemic influenza has focused attention and resources on virus surveillance, prevention, and containment. The World Health Organization has strongly recommended the use of the antiviral drug Tamiflu both to treat and prevent pandemic influenza infection. A major concern for the long-term efficacy of this strategy is to limit the development of Tamiflu-resistant influen...

متن کامل

Tamiflu Swan Song?: Building Resistance to Top Avian Flu Drug

As the WHO has begun warning of the potential for an avian flu pandemic, governments worldwide have been stockpiling Tamiflu (oseltamivir phosphate). Tamiflu minimizes flu symptoms and duration by preventing the virus from escaping the cells it infects. It also reduces the likelihood of spreading the virus. Now British researchers are predicting that heavy use of Tamiflu, as during a pandemic, ...

متن کامل

Meeting Report: Risk Assessment of Tamiflu Use Under Pandemic Conditions

On 3 October 2007, 40 participants with diverse expertise attended the workshop Tamiflu and the Environment: Implications of Use under Pandemic Conditions to assess the potential human health impact and environmental hazards associated with use of Tamiflu during an influenza pandemic. Based on the identification and risk-ranking of knowledge gaps, the consensus was that oseltamivir ethylester-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2010